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The generalized Cahn Hilliard equation is obtained as the hydrodynamic limit 
from a stochastic Ginzburg-Landau model. The associated large-deviation 
principle is also proved. In the one-dimensional case, we prove a related result 
about the scaling limit of conservative Langevin dynamics of an SOS surface. 
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1. I N T R O D U C T I O N  

C a h n - H i l l i a r d  equa t ions  have  been p r o p o s e d  and  s tud ied  widely  as mode l s  
for descr ib ing  phase  segregat ion  p h e n o m e n a  in b ina ry  alloys.  This  equa t ion  
has  the form 

O,m = A ( F ' ( m )  -- Am)  (1.1) 

where  m = m(t ,  u) (t >~ 0 and  u e Nd) is the  o r d e r  pa ramete r .  I t  has  s imi lar  
features as the react ion-dif fus ion equa t ions  bu t  here m(t ,  u) is local ly  con-  
served. Segrega t ion  of  phases  typ ica l ly  appea r s  in the cases where  F is a 
non-convex  funct ion (e.g. a double-wel l ) .  This  de te rmin is t ic  equa t ion  does  
no t  t ake  into  account  r a n d o m  effects t ha t  m a y b e  impor t an t ,  for example  if 
we wan t  to s tudy the escape f rom a me tas t ab le  state. 
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The aim of this paper is derivation of Eq. (1.1) as the hydrodynamic 
scaling limit from a stochastic Ginzburg-Landau model and the com- 
putation of the associated large deviation functional, which plays a key 
role for the metastability problem. Since Eq. (1.1) has no scaling proper- 
ties, we need to introduce the scaling parameter explicitly in the 
microscopic dynamics. More precisely, we introduce a reference process 
which is the gradient flow in ~ of a discrete quadratic Ginzburg-Landau 
functional, which produces the forth order term in (1.1); the second order 
term is then obtained by adding a suitable perturbation depending on the 
scaling parameter. The functional form of the non-linearity F'(m) is 
obtained by (equilibrium) statistical mechanics considerations. Within the 
models introduced, we are able to derive more general equations than 
(1.1): we consider, in fact, general nonlinear forth order terms (cf. (2.10) 
below). 

This approach is analogous to the derivation of reaction-diffusion 
equations as the hydrodynamic limit of a scale depending superposition 
of Glauber and Kawasaki dynamics, see [DFL].  In that case the large 
deviation functional has been computed by [JLV], see [GJLV] for further 
analysis. The physical motivation behind these kinds of models is an a 
priori separation into "fast" and "slow" modes. 

We also mention that another class of models with similar features has 
been studied. The scale in the microscopic model is introduced by means 
of a Kac potential (local mean field). In the so-called mesoscopic limit, 
a non-local equation describing the phase segregation is obtained. See 
[ DOPT] for the non-conservative case (reaction-diffusion type) and [GL]  
for the conservative case (Cahn-Hilliard type). 

In one space dimension, the reference microscopic Ginzburg-Landau 
process can be viewed as an effective model (Solid-On-Solid) for conser- 
vative random interface motion as proposed by [S, CDG]. In this case 
re(t, u) is interpreted as the gradient of a single valued function ~t(t, u) 
representing the interface height; the integral of ~(t, u) is then conserved. 
Equation (1.1) (with F ' =  0) is obtained in the Gaussian case; for a genuine 
interaction we get instead a particular forth order equation (see (3.4) below 
for ~ - - 0 )  which, as discussed in [CDG],  can be identified with the one 
obtained from free energy considerations. In the non-conservative case but 
in any dimension the scaling limit has been proved by [ FS]. 

In the interface interpretation of the model, the addition of the pertur- 
bation to the reference process corresponds to the introduction of also a 
non-conservative interface motion, of the type considered in [ FS]. In the 
scaling limit we consider, both the motions coexist and we thus get a space 
integration of the Cahn-Hilliard equation, see (3.4) below. Of course, the 
model introduced in [CDG] can be viewed as a particular case. 
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From a technical point of view, the tools used in this paper are the 
ones introduced in the diffusive hydrodynamic limit of the so-called 
gradient particle systems. In particular we shall make use of the entropy 
method introduced in [GPV,  DV] and the analysis of small perturbation 
as in [ K O V ] .  We shall not repeat the details of the proofs, but rather 
quote the relevant results and explain the modifications needed. 

2. N O T A T I O N  A N D  R E S U L T S  

For  a positive integer N, denote by T N the discrete one-dimensional 
torus with N points and set T % = (TN) d. The state space ~v~ is denoted by 
Y'd N and configurations by the greek letter 9- In this way, for a d-dimen- 
sional integer x, 9x denotes the charge at site x for the configuration 9. 

Consider a twice continuously differentiable function W: ~ ~ R, and a 
local smooth function (interaction) V(9) and define the Hamiltonians 
Hv, Hw: y~d ~ R by 

/-/v(~O)= X v(~x~o), Hw(~o)= X W(~ox) 

where zx is the shift operator on TdN . We assume that W is normalized: 

Re w(~~176 dq~0 = 1 

that W'(q~0) has all exponential moments finite: 

f e~W'(.o) rV(,o) dgo< 

for all y in ~ and that there exists a function co: R ~ ~ that increases faster 
than linearly at the boundary (limt~ I ~ ~ co(u)/lu[ = oo) such that 

~ e,,~(~o) w(.0) dcPo < oo (2.1) 

To state the assumption made on V, denote by A v the support of the cylinder 
function V and by ~ / the  cylinder function defined by 

OHv 

v(~)-  a~o 
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We shall assume that V increases slower than W, i.e., that there exists finite 
constants Co, C1 < 1 such that 

IV(~)[~<Co+CI ~ (o(q~x) 
x E A  V 

and that V(cp) 2 has finite exponential moments: 

fu e~V(~o) 2 W(~o) d~oo < ~ (2.2) 

for some a > 1. 
The configuration cp(t) evolves in time as a diffusion process following 

the stochastic differential equations: 

dcpx(t) = \ Oq~ Jx d t -  A2 x d t+x /~(ANdB)x ( t  ) (2.3) 

where {Bx(t), xeT~r are independent Brownian motions. Here and 
below, for a function defined on Nv%, (VNH)x stands for the d-dimen- 
sional vector whose j th  coordinate is equal to N{H(Cpx+,))- H(~o~)} and 
(ANH)x stands for the discrete Laplacian of H so that (ANH)x = 
N2 •l <~j<~d {H(cPx+,;) + H((Px ,,j) -2H((px)}. In particular, 

(A OHv'~ N--~ Jx = DN Hv  

where 

The infinitesimal generator of this Markov process is given by 

L N = L w +  Lv 

where 
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and 

L v  = _ ~ / OHv\  

N N In this formula (OxN) 2 stands for the second order operator D~ D~. 
We now introduce the reference measures. Let Z: ~ ~ N be defined by 

Z(y) = fR eye~ W(~o) dq~o < oe for every y E It~ (2.4) 

Notice that the finiteness of Z follows from assumptions (2.1). For  7 e R, 
-:v be the translation invariant product measure on 2f~ defined by let v7 

9~(d(,o) = ~I eY~~ W(~~176 
x ~  g d 

(2.5) 

Let p(y) be te mean charge under the measure ~y: 

p(y) = E ~  [ rp0 ] = f Cpo ey~o - w~~ Z(y) d~oo - ~ -  Z'(~2)lZ(~)) (2.6) 

It is easy to see that p: R ~ ~ is a smooth strictly increasing bijection. Since 
- N  p(y) has a physical meaning as the mean charge under the measure v~, 

instead of parametrizing the above family of measures by y, we use the 
mean p as parameter. In this way if y: ~ ~ ~ denotes the inverse of the 
function p ( y ( u ) = p - l ( u ) ) ,  we write: 

N - N  Vp = v~,), p e E (2.7) 

To keep notation simple, we denote the measure v~ by v N. 
Let h: E ~ R be the Legendre transform of the function log Z: 

h(u) = sup {yu - log Z(y)} 

Sice log Z is a strictly convex function, h inherit this property and thus h' 
is a strictly increasing function. This fact is important in the proof  of the 
two blocks estimate. Since P(Y)= 0y log Z(y), a simple computation shows 
that the function y is equal to h' defined above. 

We shall consider the process generated by LN as a perturbation of the 
process generated by Lw, which is reversible with respect to v N. Our first 
main concern is to investigate the macroscopic behaviour of  q~(t). We 
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prove below that it is described by the solution of a generalized Cahn-  
Hilliard equation. In order to state this first result, we need to introduce 
some notation. For  a cylinder function 7t(q~), denote by qt: ~ ~ the 
smooth function defined by 

~t(rn) = I ~(cp) e h'r r - w(~,) dq~ 

To prove uniqueness of weak solutions of the hydrodynamic equation 
we shall require V to satisfy the following estimate: there exists a finite 
constant C2 such that 

( ~ ( v )  - ~ ( u ) )  2 ~< C 2 ( v  - u ) ( h ' ( v )  - h ' ( u )  ) (2.8) 

for all u, v in E. 
On the other hand, for each probability measure/z :v in ~ a  N, denote by 

HN(~ N) the relative entropy of/~u with respect to vN: 

=s p log; t 
f 

where the supremum is carried over all bounded cylinder functions f 
Denote by ~-a the d-dimensional torus. Fix a smooth profile mo: Td ~ 

and denote by ~Ua sequence of probability measures associated to mo is the 
sense that 

'im f > l=o (2.9) 

for every continuous function j :~a_._~ and every 6 > 0 .  Denote by 
P/,N=P~ u the probability measure on the path space C(~+ ,  y-d) corre- 
sponding to the Markov process ~o(t) starting from/~U 

T h e o r e m  2.1. Fix a smooth profile m0:-I]-a~ ~ and consider a 
sequence of probability measures ~/N associated to m 0 and such that 
HN([A N) <.Ko Nd for some finite constant K0. Let re(t, u) be the unique 
weak solution of the generalized Cahn-Hill iard equation on the torus ~-a: 

Otto = d ( ~ / ( m )  - 3 h ' ( m )  ) 

rn(O, u) = too(U) 
(2.10) 
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Then, for every t > 0, 

,im I  1--0 
N ~  

for every continuous function J: T a ~ R and every 6 > 0. 

Remark. The classical Cahn-Hill iard equation (1.1) is obtained when 
the reference measure v N is Gaussian, i.e., for W(~o0)= (1/2) cp 2. In this case 
the unperturbed process generated by L w is just a linear Ginzburg-Landau 
process. On the other hand, classical ~gfl arguments translated to the W_ 2 
context guarantees the uniqueness of weak solutions in W_2. It is in this 
proof that we need assumption (2.8) on ~.  The latter condition gives 
a restriction on the behaviour of ~(m)  for large Iml and rules out the 
"classical" quartic double well, i.e., h'(m)=m, ~/(m)=am 3 -bin,  a > 0 .  
However, there is no restriction (apart for the smoothness) on the behaviour 
of ~/(m) for finite Im], i.e., on the local shape of the potential F in (1.1). 

This first result can be interpreted as a law of large numbers for the 
empirical measure n N defined by 

1 ~,~(ctu)=~-a E q,x(t)6x/N(au) (2.11) 
x c ~  d 

where, for a real u, Ou is the Dirac measure concentrated on u. Theorem 2.1 
states that for a sequence of initial probability measures associated to a 
profile m0 in the sense of (2.9) and with entropy of order KoN a, the empiri- 
cal measure rc u converges in probability to an absolutely continuous 
measure whose density is the solution of Eq. (2.10). 

To address the question of large deviations of the empirical measure, 
for a positive integer (, let Jgt be the space of signed measures on T d with 
total variation bounded by Y. Equipped with the weak* topology induced 
by C(T d) via (rc, H ) = ~  Hdrc for H~C(q[d), z~,/g~, .///[~ is a compact 
metric space. Set Jg = 0 t Jg~. 

To fix ideas and keep notation simple, we shall investigate the large 
deviations for a system starting from the product  measure v N. All the 
analysis goes through for any sequence of product  probability measures 
associated to a profile P0 in the sense (2.9). 

Fix a time T >  0. For  a positive integer N, denote by QN the prob- 
ability measure induced on C([0, T],  Jg) by the empirical measure zc N and 
the probability measure P vN. 

We now introduce the ingredients needed for defining the rate func- 
tional of the large deviation principle. Throughout  this particle, for positive 
integers m and n, we denote by cm'n([0, T] x ya)  the space of functions 
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H: [0, T] x 3a_ ,  R with m continuous derivatives in time and n continuous 
derivatives in space. For H e  C1,4([0, T] x Ta), let IH: C([0, T], Jg)--* 

w { oo } be given by: 

T 

In(~r)=(mr'  Hr )  - (m~ H~ --fo dt (mr, 8tH,) 

-- f :  dt f du ~(m(t,  u)) AH,(u) 

- f f  dt fT du h'(m(t, u)) A2H,(u)-  f :  dt fvu du (AHt(u))2 

if rcE C([0, T], d//) and n, is absolutely continuous with respect to the 
Lebesgue measure 2 with density m: n(t, du) = m(t, u) du./1t(. ) =  + oo if m, 
is not absolutely continuous with respect to 2 for some 0 ~< t ~< T. We then 
let I: C([0, T], J g ) ~  [0, +oo]  be defined as 

( ,  

I(zc) = | h(m(O, u)) du + sup Iu(~z) 
J x  d H e  CI,4([0,  T ]  x yd) 

I( .)  is the rate functional appearing in the lower and upper bound large 
deviations. In Lemma 5.2 below we obtain an explicit formula for the rate 
function L 

Let d be the space of all profiles zc such that the density m,  = (dzc~ 
is the solutions of the PDE 

( ~,m = A{ ~/(m) + Ah'(m) - AH} (2.12) 
re(O, -) = too(.) 

for some H in C1'4([0, T] x T a) and m0 in C4(}-a). In other words, a 
profile zc is in d if there exists H in C',4([0, T] xY d) such that 
m. = (dzc./d2) is the solution of the above PDE. 

We are now in a position to state the second main theorem of this 
article. 

T h e o r e m  2.2. For every closed subset ~ and every open subset (9 
of C([0, T], J / )  we have 

1 
lim sup ~-g log QN(q~) ~< -- inf I(rc) 

N ~ o o  ~eq~ 

lim inf 1 ~v~ oo N-g log QN((9)/> - -  inf I(rc) 
roe C c~ ~r 
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3. S C A L I N G  L I M I T  FOR S U R F A C E  D I F F U S I O N  

We consider in this section a microscopic dynamics that describes the 
evolution of a one dimensional surface. Recall from Section 2 the defini- 
tions and the assumptions made on the Hamiltonians Hw and Hr.  For a 
positive integer N, let ZN denote the set { - N ,  .... N} and denote by Sv the 
linear size of the support of the potential V, i.e., the smallest integer k so 
that the support of V is contained in { -k,..., k}. To keep notation simple, 
let Nv  = N - s v .  Throughout this section z] x (resp. z~)  stands for the dis- 
crete laplacian o n  Z N (resp. ~-Nv): ( A N f ) ( x ) = N 2 [ f ( x + l ) - 2 f ( x )  + 
f ( x - 1 ) ]  for [xl<~N-1, 

(ANf)(N) = N z [ f ( N - -  1 ) -- f (N)  ] 

and 

('~Nf)(--N) = N E [ f ( - - N +  1 ) - - f ( - - N ) ]  

We consider a diffusion on NeN with reflection at the boundary. The 
time evolution is described by the stochastic differential equations 

Like in Section 2, we may write the infinitesimal generator of this diffusion 
process and investigate the hydrodynamic behaviour. With the reflection 
conditions imposed at the boundary the hydrodynamic equation is easy to 
deduce. 

For each p in R, denote by v~ the product measure ~7~ introduced in 
(2.5) with ZN replacing the torus T d and with 7 chosen in such a way that 
the particles density is p. Denote by HN(. ) the relative entropy with respect 

u and recall from Section 2 the definition of a sequence of measures to v 0 
N the associated to a smooth profile m0: [ - 1 ,  1 ] --* ~. Denote by P,N = P/~N 

probability measure on the path space C(E+,  R zu) corresponding to the 
Markov process ~p(t) starting from p u. 

Theorem 3.1. Fix a smooth profile too: [ - 1 ,  1] ~ ~ and consider 
a sequence of probability measures /~u associated to m o and such that 
HN(p :v) <~ KoN for some finite constant K o. Let m(t, u) be the unique weak 
solution of the generalized Cahn-Hilliard equation on [ - l, 1 ] with reflec- 
tion at the boundary: 
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t 
atm = A(~/(m) - Ah'(m) ) 
re(O; u) = too(U) 
Oh h (m(t, -- 1)) = O,h'(m(t, 1)) = 0 

3 h, 3 , [a .  (re(t, - 1 ) ) = O ~ h ( m ( t ,  1)) 0 
for all t ~> 0 

for all t ~> 0 

( 3 . 2 )  

Then, for every t > 0, 

lim P/,N [ ~ x~ J(x/N)q~x(t)--f du J(u)re(t, u)> 5] :0  
N ~ o o  

for every continuous function J: Td--* R and every 5 > 0. 

There is a technical difficulty in the proof of this result. To show that all 
limit points of the sequence QN are concentrated on absolutely continuous 
paths whose density are weak solutions of the Cahn-Hilliard equation (3.2), 
we need to prove that the time integral of N[ W'( ( ,ON( t ) ) - -  W'(~o N l(t))] 
vanishes as N T ~ .  This is possible because the Dirichlet form at the 
boundary writes N 4 ~ [(0~N - O~u-,) f]  2 dv u. 

We are now in a position to define and investigate the time evolution 
of a surface diffusion. For - N  ~< x ~< N, define ~x(t) by 

y % x  

so that ~'_:v(t)=0 and C3,~N(t ) = 0  because the total charge is conserved 
by the cp-dynamics. The following stochastic differential equations describes 
the evolution of ~(t): 

d O x ( t ) = \  N ~ - j x d t - -  V N 3  N d t + x / ~ d ( V s B ) x ( t )  (3.3) 
x 

for Ix[ ~< N -  1. Moreover, a simple computation shows that macroscopic 
evolution of the surface is given by the equation: 

= - z l h  

u)  = 

)2(t, --1) = 0, 2(t, 1)=2o(1 ) fora]l 
~,Ah' (0,2(t, -1))=Ah' (O,2(t, 1))=0 

t~>0 
for all t/> 0 

(3.4) 

Remark. For V= 0 the microscopic evolution of the surface is the 
same model introduced in [CDG]:  compare [CDG, Eq. (2.13)] with our 
(3.3). Accordingly, the macroscopic evolution is the one obtained in the 
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above reference under the hypotheses of local equilibrium (which we prove 
to hold), compare (3.4) for V = 0  with [CDG, Eq. (4,7)]. 

4. H Y D R O D Y N A M I C  L I M I T  

We prove in this section the hydrodynamic behaviour of the process 
~o(t) defined in the previous section. The proof follows closely the approach 
introduced by Guo, Papanicolaou and Varadhan in [GPV] to deduce the 
hydrodynamic equation of diffusive gradient interacting particle systems. 
We just point out the main technical differences of our model. 

We shall consider our system as a small perturbation of the reversible 
(with respect to the measures v N) Markov process with infinitesimal 
generator Lw. The Dirichlet form associated to this latter process is: 

1 ANC~f 2 

We first obtain a lower bound for this Dirichlet form in terms of a simpler one. 

Proposition 4.1. Denote by ~N the Dirichlet form defined by 

There exists a finite constant C depending only on the dimension d such 
that for every density f with respect to v N, 

~@N(f) ~ C~N(f)  

Proof. Let u(x) be a function in TaN . By Schwarz inequality, 

u(x) - N -a ~ u(z) <~ C(d) N -1 ~ {(VNU)(X)} 2 z x 
for some constant C(d) depending only on the dimension. A summation by 
parts permits to rewrite N -1 5-',x{ (VNU)(X)} 2 as 

- -N  1 ~ u(x)(ANu)(x) x 
\2") 1/2 2} ~X l ie  x (u(x)- Jg-d~u(z)) ~ {~x {(AN/~)(X)} 1/2 

~.C(d) {~x {(VNU)(X)}2}I/2 {~x {(ANU)(X)}2}I/2 



376 Be r t i n i  e t  al. 

Therefore, 

E { (VNU)(X)}  2 < C(d)  E { (Z~Nu)(X)} 2 
x x 

what concludes the proof of the proposition. | 

In possession of this estimate we may repeat the large deviations 
arguments of [DV], [KOV] to prove a superexponential one and two 
blocks estimates that allows the replacement, at the level of large devia- 
tions, of cylinder functions by functions of the empirical density. 

For each positive integer d and each site x, denote by ~ the empirical 
mean charge on a box of linear size d centered at x: 

1 d 

q G - ( 2 d +  1). E qgy 
lY x]~<[ 

Denote by Pv w the probability measure on the path space C(~+,  WaN) 
corresponding to the Markov process with generator L w starting from v N. 

L e m m a  4.2. Let q~ a bounded cylinder function. For each positive 
integer d, denote by (2+(cp) the cylinder function defined by 

1 
f2y(~o) = ( 2 d +  1) ~ '  E rxqsC~~ 

Ixl ~< r 

For every t > 0 and 6 > O, 

[s 1 limsup l imsupN alog P f  d s N - d ~ ,  I%0~N(CP(s))l > 6  = --oo 
t:~O N~oo 0 x 

Proof. By the reversibility of the dynamics here considered, the 
Feynman-Kac formula and the variational representation for the largest 
eigenvalue of a symmetric operator, the problem boils down to prove that 
for every a > 0, 

lim sup lim sup sup { ( f f 2 ~ N ( f p ) f )  - -  a N  l~N(f)  } = 0 
e ~ 0  N ~ o o  f 

where the supremum is taken over all probability densities with respect to 
v v and ( .  } indicates integration with respect to v N. Thanks to Proposi- 
tion 4.1, it is enough to prove that 

lim sup lim sup sup { (ff2~N(~O)f) - -  a N - ' @ x ( f ) }  = 0 
c o O  N + o o  f 

for every a > O  and this is proved in [GPV].  | 
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This estimate can be extended to the full process repeating the 
arguments of Lemma 5.1 of [ KOV ]. It is in this extension that assumption 
(2.2) is required. Theorem 2.1 follows from this replacement lemma and the 
entropy method introduced in [GPV]. 

5. L A R G E  D E V I A T I O N S  

The proof of large deviations from the hydrodynamic limit follows 
closely the approach presented in [DV] to investigate the large deviations 
of Ginzburg-Landau lattice models. We just point out below the main 
differences. 

Upper Bound. For each smooth function J: ~+ x qi-d~ ~ and con- 
tinuous function G: qI-J~ ~, the expression 

M, = M ]  J = exp Nd{ (To N, G) - (2N, log Z(G)) } 

x exp ( A N J ) ( s  , x/N) dBx(s ) 

- ~  [(ANJ)(s, x/N)] 2 ds 
x 

is a mean one, positive martingale. In this equation )]'N stands for the dis- 
crete approximation of the Lebesgue measure and Z(. ) is the partition 
function defined in (2.4). By formula (2.3) and by an integration by parts, 
we may rewrite this martingale as the exponential of 

-- 7"C N (7'~0 N, G )  (~ 'N, log  Z ( G ) )  Nd ( rcN, Jr) -- ( ~rN, Jo) ds ( s, 8sJs) -4- - 

--~, ds(duJ)(s,x/N ) ((p(s)) -- ~-~, ds(AZJ)(s,x/N)W'((px(s)) 
x x 

f2 - - 2  ds  [ ( A N J ) ( s  , x/N)] 2 (5.1) 
x 

Denote by Ndfs, a(zd v) the first line of this expression. By definition of V, 
the difference 

N - a ~  (A2vJ)(s, x /N)~-~((p(s)) -N-a~x (ANJ)(s, x/N) zxV(9(s)) (5.2) 
x 
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is of order O(N -1) because J is a smooth function. Denote by Rj,,,,N the 
difference between the second line of (5.1) and 

- - ~  ds  (ANJ)(s , x/N) ~/(q~Y(s))--~ ds (A2J)(s, x/N) ' ,,u h (~ox (s)) 
x x 

Fix a set K of C([0, T], Jg). With the notation just introduced, for 
every q >  1, O N [ K  ] which is equal to PvN[lzNEK] can be rewritten as 

E.N[ I{IrN~K} M~qM~ 1/q] 

~< exp -- { inf ( 1/q) ~9 j, G, ,,, N} E v N [ 1 { n N e K} M ~qe Rj,~. N ] 
rc~K 

where I[Ij, G,~:,N(7"C ) is equal to 

Naf "G(n) -- ~" I :  ds (A NJ)(s, x/N) ~/((2e) -a  n(s, [ (x/N) - e, (x/N) + e]) ) 
x 

x 
ds (AZ J)(s, x/N) h'((2e) v-d  n(s, [ ( x / N ) -  e, (x/N) + e] )) 

- ~  ds[(AuJ)(s,x/N)] 2 
x 

Let p stands for the conjugate of q. By Schwarz inequality, E~N [ 1{/zN~ K} 
M~/q exp{Rj,~,N} ] is bounded above by ~-,N[exp{pRj,,:,N} ]~/P because MT 
is a mean one positive martingale. Denote by Rq, j,~ the limit sup as NT 
of the logarithm of this expression divided by N a. 

Minimizing over q, J, e and G, limsupN~o~N--dlogPvN[nN~K] is 
bounded above by 

- sup { inf(1/q) ~9s, G,~(n ) +Rq, g,~} 
q,J,G,e ze~K 

where ~9j, G,~(n ) is the limit as NT ~ of N d~Jj, G.,e,N(7IJ ). By the super- 
exponential estimate stated in Lemma 4.2, for every q > 1 and smooth J, 
the limit as e $ 0 of Rq, j, e vanishes. 

Assume now that the set K is compact. Since ~,j.a.~ is continuous for 
every J, G and e > 0, we may apply the arguments presented in Lemma 11.3 
of [V] to exchange the supremum with the infimum. Hence, last expression 
is equal to 

- inf sup { ( l / q )  ~ / , j , a , ~ ( n ) + R q ,  j , , }  
~ K  q,J,G,e 
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Notice that for a path z~t(du ) which is not absolutely continuous the 
supremum over J and e > 0  diverges. On the other hand, for an 
absolutely continuous path, letting e ~ 0, then q ~ 1, by definition of I, we 
obtain that the last variational formula is bounded above by 
--inf.+KI(Zc), what concludes the proof  of the upper bound for compact 
sets. To extend it to closed sets, we need to prove the exponential tight- 
ness of the sequence ON. The arguments presented in [DV] ,  [ B K L ]  
apply to the present context. 

Lower Bound. The first result shows that from the point of view of 
large deviations, we may restrict our attention to paths re(t, du) that are 
absolutely continuous with respect to the Lebesgue measure: 

Lemma 5.1.  Let ~z* be a path in C([ O, T], ~ ) ,  e > O and J: Td-~ R 
be a continuous function and consider the neighborhood Vj,~ defined by 

Assume that 

lim sup N dlog ~ N [  V t ,  J , e ]  ~ --7 

for every t, e > 0 and smooth function J. Then, ze* is absolutely continuous: 
zc*( t, du) =m*( t ,  u) du and 

sup I h(m*(t, u)) du <<. 7 
O <~ t <~ T ' 

The proof  is close to the one of Lemma 2.3 of [DV] .  There is just an 
additional difficulty from the fact that v N is not invariant for the process. 
This can be overcome by considering the process as a small perturbation 
from the one with generator L w. 

We now obtain an explicit formula for the rate function L 

L e m m a  5.2. Let re(t, du)=m(t ,  u)du be an absolutely continuous 
path with finite rate function: I(r 0 < oo. There exists a function G in 
such that 

O,m = A ( ~ / + A ( h ' +  G)) 

822/88/1-2-26 
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Moreover, 

I(zO = fvah(m(O, u) ) du + f :  dt lvadu (AG)2 

= f~ah(m(O, u) ) du+ f f  dt IlOtm - A(~/(mt) + Ah'(m,))ll2 2 

The proof if omitted. The reader is referred to Lemma 2.4 of [DV] or 
Lemma 5.1 of [ KOV ] for a similar statement. 

The proof of the lower bound follows from these two lemmata and a 
law of large numbers for the empirical measure under a small perturbation 
of the dynamics that we now state (cf. [BKL]). 

Fix a smooth function J: ~+ x ~-d~ [~ and a continuous function 
G: 7d__} R, and consider the probability measure P ~  on the path space 
C([0, T], 5f~) induced by PuN and the martingale M~ 'J through the for- 
mula J,c PN [ ' ]  = EvN['M~'S] �9 

Lemma 5.3. Under the probability measure p~G, the empirical 
measure z~ converges in probability to the absolutely continuous path 
zc(t, du) = m(t, u) du whose density is the solution of the equation 

{ ~tm = A(~/(m) - Ah'(m) - A J) 
m(O, u) = ;(G(u)) 

where p is the function defined in (2.6). 
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